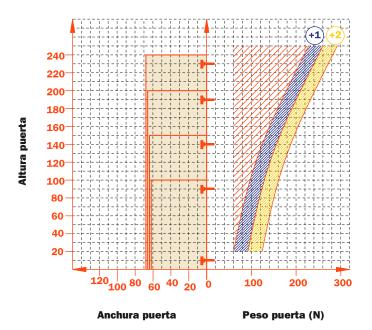

para puertas de madera


Las bisagras Universales permiten resolver una serie de montajes con puertas molduradas o biseladas. Codo y cazoleta de zamak niquelado opaco.

Dimensión de la cazoleta ø 35 mm.

Valor constante "L" 0,7 mm; no cambia regulando lateralmente la bisagra.

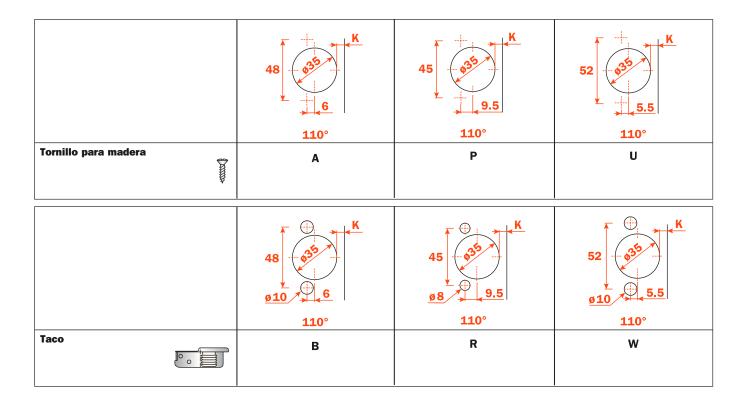
Número indicativo de las bisagras necesarias en función de las dimensiones y del peso de la puerta.

Regulaciones

Regulación lateral compensada desde -1.5 hasta +4.5 mm. Regulación vertical ± 2 mm.

Regulación frontal con bases Serie 200 +2.8 mm.

Regulación frontal con bases Domi desde -0.5 hasta +2.8 mm. Parada de seguridad antideslizante.


Bases

Bases simétricas y asimétricas de acero o de zamak niquelado opaco de la Serie 200.

Enganche rápido con bases Domi.

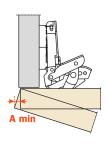

Posicionamiento con fin de carrera preestablecido con bases tradicionales Serie 200.

 $\ensuremath{\mathsf{N.B.:}}$ Utilizar un destornillador POZIDRIVE n.2 para todos los tornillos.

Utilizar las tablas para identificar los taladros y las fijaciones disponibles. Insertar en la tercera posición del código de la bisagra la letra o el número correspondiente a la selección hecha. Ejemplo: CB_2AC9.

Colocar en esta posición la letra o el número seleccionado.

Informaciones técnicas


Permiten resolver una serie de montajes con puertas molduradas o biseladas.

Profundidad de la cazoleta de zamak 9 mm.

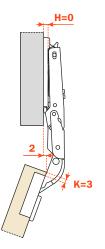
Abertura 110º Para limitar la abertura de la bisagra, ver página 17, capítulo "Accesorios".

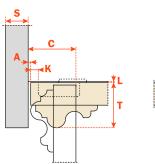
Posibilidad de taladro de la puerta "K" desde 3 hasta 18 mm. Adaptables a todas las bases tradicionales Serie 200 y a todas las bases Domi de enganche rápido.

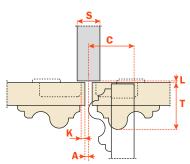
Espacio necesario para la abertura de la puerta

	T=	16	18	20	22	24	26
K=3	A=	0.0	0.0	0.0	0.0	0.3	1.4
K=4	A=	0.0	0.0	0.0	0.0	0.4	1.5
K=5	A=	0.0	0.0	0.0	0.0	0.5	1.9
K=6	A=	0.0	0.0	0.0	0.0	0.7	2.6
K=7	A=	0.0	0.0	0.0	0.0	11,3	12.8
K=8	A =	0.0	0.0	0.0	0.0	10.3	12.9
K=9	A=	0.0	0.0	0.0	0.0	9.3	11.9
K=10	A=	0.0	0.0	0.0	6.0	8.3	10.9
K=11	A=	0.0	0.0	0.0	5.1	7.3	9.9
K=12	A=	0.0	0.0	0.0	4.1	6.3	8.9
K=13	A=	0.0	0.0	1.4	3.3	5.3	7.9
K=14	A=	0.0	0.0	0.7	2.6	4.5	6.9
K=15	A=	0.0	0.0	0.2	2.0	3.8	5.9
K=16	A=	0.0	0.0	0.0	1.4	3.2	5.0
K=17	A=	0.0	0.0	0.0	1.0	2.7	4.4
K=18	A=	0.0	0.0	0.0	0.7	2.2	3.9

Una moldura de la puerta disminuye los valores de "A"

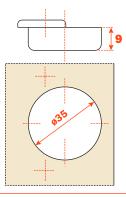

Retroceso de la puerta

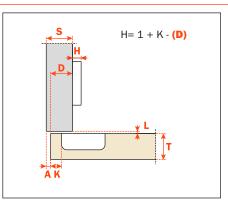

Retroceso de la puerta respecto al lateral en posición de máxima abertura. El valor indicado es resaltado con altura base $H=0\ y$ valor K=3.


El contenimiento

C = 5.5 + K + A

Con esta fórmula podeis obtener el espesor máximo de la puerta con moldura abrible sin interferir con los laterales, puertas o paredes adyacentes. También hay que tener presente la tabla de los valores K - T.




Embalajes Cajas 150 piezas Palets 3.600 piezas

Utilizar estas fórmulas para establecer el taladro de la puerta "K" y la altura de la base "H" necesarias para resolver cada problema de aplicación.

Codo 0

